

Challenge for Recycling Strategic Metals From Renewable Energy Equipment

Dr. Farouk TEDJAR

IUMP Seville March 2016

Sustainable growth; it is intersection between

Resources conservation

Social acceptance

Maintaining current growth

It is the challenge of 21^e century

Environment protection

Acceptable cost for society

Today the impac of the City Appetite has a very strong impact on eco-system (Scenario of Meadows UN study)

It is for this that it not anymore a concern of few countries but worldwide issue

Worldwide reaction under driving of UN from 30 years !!

- Rio Summit (1992)
- Kyoto Protocol (1998)
- Johannesburg Agreement (2002)
- Copenhagen convention (2009)
- COP21 Paris (December 2015)

The 1st levier of sustainability :

The drak side of large consumption products

The 2nd levier : Availability and geopolitical aspect of strategic metals

"sustainability " of strategic ressources

Sources USGS 2010

situation of main strategic metals

F. Tedjar invited course Collège de France, French Academy of Science, Sustainability Chair, Mars 2012

Geopolitical Aspect Concentration of strategic resources

Impressive increase of end-of-life product Is needing more and more dedicated processes

Only ONE solution !!!!

From old mine.....

... To URBAN $\mathsf{MINE}^{\mathbb{R}}$

Regsitred by Prof. Tedjar (Recupyl -2004) N° 79083906 Int. TM Register

The first surface « urban » mine !!!

But need the adhesion of the citizen (volontary action)

Life cycle of products

From cradle to....

Which sustainable technology to exploit Urban Mine?

Metallurgy approach

But today negative sides > to benefits

It is known that metallurgy is millenary old !!

The issue of Dioxins in thermal processes

1- High energy used
2- High CO2 emission
3-high risk with other
Toxic emissions
4- some metals lost in slag

But Hydrometallurgy is also millenary !!!!

The new segment of Hydro

Filtration of sulfur/oxides/k'hol

Preparation of Leaching solution

Battery segment

Challenges in battery recycling Metals in batteries : 130 years evolution More and more elements have to be recycled

*	A Stra			Zn-MnO2 Pb-PbO2 Ni-Cd Zn-HgO	
Simetals Zn-MnO2 Pb-PbO2	→ Image: A state of the sta	Zn-MnO2 Pb-PbO2 Ni-Cd Zn-HgO Zn-air Ni-MHx Ni-Fe Zn-Ag2O Li-MnO2 Li-SOCI2 Li-SOCI2 Li-CFx Li-FeS2	Zn-MnO2 Pb-PbO2 Ni-Cd Zn-HgO Zn-air Ni-MHx Zn-Ag2O Li-MnO2 Li-SOCl ₂ Li-SOCl ₂ Li-CF _x Li-FeS ₂ Ni-Fe Li-COO _x	Zn-air Ni-MHx Zn-Ag2O Ni-Fe Li-MnO2 Li-air Li-SOCl2 Li-CFx Li-FeS2 Li-Li CoO _x Li-Li CoO _x Li-LiNiO ₂ Li-Li Mn2O4 Li-(V ₆ O ₁₃) Li-Li FePO4 Li-M-N-C Li(Si)- Sx	25 metals,60% Li based
<mark>1880</mark>	1940	1980	2000	2013	
	000				

Around 2.2 Billions mobiles phones In the world

= around 100 000 T of batteries

STEP A : mechanical treatment (first prototype)

Safe and efficient mechanical treatment

STEP B / Chemical treatment of fine fraction: ©CEN RECUPYL Leachning

mother liquor g/l

36.1

4.5

1.7

0.6

Carbon

solution

Profiles of charge/discharge potentials of the cathode based on LiCoO₂/PVDF and RECUPYL carbon (mass ration 83:7:10 % w/w correspondently) at different current densities.

Step B Chemical treatment : metal recovery

Mother solution

	mother liquor g/l		
Со	36.1		
Li	4.5		
Mn	1.7		
Ni	0.6		

Solution

Cobalt cake

The issue of Lithium

Geo-strategy of lithium world resource

Characteristic of recovered Li_2CO_3 O_3

File: 10-131-sp0,25hz-0,033*-150s-a8-mk10-XC2,1_RCY-FTe-117-Li2CO3-RecupNMC1.raw - Type: 2Th/Th looked - Start: 9.938* - End: 130.998* - Step: 0.033* - Step time: 150.5 s - Te 04-010-7188 (*) - Li2(CO3) - Zabuyelite, syn - Y: 82.92 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 8.36148 - b 4.97743 - c 6.19750 - alpha 90.000 - beta 114.698 - gamma 90.000 - Base-c

Large scale of applications Image: Construction Image: Co

RECUPYL

TECHNOLOGIES

Cell type	Electrolyte	Temperature (°C)	Area of use and power range
Alkaline (AFC)	potassium (liquid)	80	space - transportation 1 - 100 kW
Proton exchange membrane (PEMFC)	polymer (solid)	80	portable, transportation, stationary 1W - 10 MW
Phosphoric acid (PAFC)	phosphoric acid (liquid)	200	stationary, transportation 200 kW - 10 MW
Molten carbonate (MCFC)	molten salts	650	stationary 500 kW - 10 MW
Solid oxide (SOFC)	ceramic (solid)	700 to 1 000	stationary - transportation 100 kW - 10 MW

Project granted by EDF-GDF after European Call For Tender:

Dismantling (2)

۲

CF.

l aboratoire d'

M

Mass balance and recycling rate

ltem	concentration	gross mass	Net recovered
Carbon steel	100%	12720	12720
Stainless steel	100%	2642	2642
catalyst 1		360	
Zinc	41.1%		148
Cuivre	37.8%		136
Residue	11.0%		
Catalyst 2		90	
Zn	72.0%		63
Alumina	1.0%		
Ni	27.0%		24
electrode+ Graphite	0.05%	1974	0.987
electrolyte waste	0.00%	210	
electronic waste	77%	2560	1980
Packaging	0.0%	1100	
	Total weight kg	21656	17714

Recycling rate 88 %

Segment of solar panels

The segment of solar cells One of the key segment for sustainability and energy transition

But we need to anticipate End-Of-Life

General veiw of solar panel

First mechanical step

Polymers And coarse Metal fraction

glass

Fine fraction (metals)

Used Solar Cells converted to valuable materials

Glass

Mix of polymers

Metals (connections)

Active materials As Si and CGIS*

In first conclusion

If the old alchemists ...

Tried to change lead into gold

RECUPYL...the new "alchemist"

Changed the waste into gold

But in second conclusion

If the ressource are "finite", innovation is infinite

RECUPYI

Thank you for your attention

Équipe meca

Équipe chimie